
z/OS Control Blocks
and the Rexx Storage BIF
René Vincent Jansen, 35th International Rexx Language
Symposium 2024, Brisbane, Queensland, Australia

2

Contents
Why is this relevant
Some very good reasons to look into this1

What is a Control Block
The data part of an Operating System2

What can we do with them
Explore, gain knowledge, understand and
diagnose problems, build useful tools

3

View Control Blocks: ISRDDN
ISRDDN suprises again with useful functionality4

View Control Blocks: IPCS
The old standby for OS analysis and dump
formatting

5

Program with the Rexx
STORAGE built-in function
Make you own useful and to-the-point
programs

6

7 Macro's and Assembler
Make you own useful and to-the-point
programs, and here the mapping is done for
you!

8 .. or even in COBOL
Among other, how to find out if you are running
under CICS or JES2

№ Why is this relevant1

Relevant because
Most performance monitor software reads these

Can zoom in for specific investigations

Can roll your own performance tool

Know how the ASCB tool works

Learning: by looking into the structure of the OS you will understand performance
issues better

4

№ What are Control Blocks2

What is an operating system
A Supervisor

A Scheduler

Utilities, loaders, linkers and compilers and other small fry

The control blocks are the data areas (variables) of the supervisor and the
scheduler

Like JCL is the way to command the scheduler

6

What is Virtual Storage
Illusion arranged by hardware and system software

Every address space is 16MB (24bit), 2GB (31bit) or 18 ExaBytes (18 Quintillion bytes (64bit)

A map divided in different areas, some do overlap

z/OS has private and common areas

Some common areas map to the same real storage

(Different virtual addresses can even map to the same real address)

7

8

9

31-bit memory map (MVS/XA)

10

*

* write-protected

How does z/OS find programs?

11

When a program is requested through a system service (like LINK, LOAD, XCTL, or ATTACH) using default options, the system
searches for it in the following sequence:

1. Job pack area (JPA) A program in JPA has already been loaded in the requesting address space. If the copy in JPA can be
used, it will be used. Otherwise, the system either searches for a new copy or defers the request until the copy in JPA
becomes available. (For example, the system defers a request until a previous caller is finished before reusing a serially-
reusable module that is already in JPA.)

2. TASKLIB A program can allocate one or more data sets to a TASKLIB concatenation. Data sets concatenated to TASKLIB
are searched for after JPA but before any specified STEPLIB or JOBLIB. Modules loaded by unauthorized tasks that are
found in TASKLIB must be brought into private area virtual storage before they can run. Modules that have previously been
loaded in common area virtual storage (LPA modules or those loaded by an authorized program into CSA) must be loaded
into common area virtual storage before they can run. For more information about TASKLIB, see z/OS MVS Programming:
Assembler Services Guide.

3. STEPLIB or JOBLIB STEPLIB and JOBLIB are specific DD names that can be used to allocate data sets to be searched
ahead of the default system search order for programs. Data sets can be allocated to both the STEPLIB and JOBLIB
concatenations in JCL or by a program using dynamic allocation. However, only one or the other will be searched for
modules. If both STEPLIB and JOBLIB are allocated for a particular jobstep, the system searches STEPLIB and ignores
JOBLIB. Any data sets concatenated to STEPLIB or JOBLIB will be searched after any TASKLIB but before LPA. Modules
found in STEPLIB or JOBLIB must be brought into private area virtual storage before they can run. Modules that have
previously been loaded in common area virtual storage (LPA modules or those loaded by an authorized program into CSA)
must be loaded into common area virtual storage before they can run. For more information about JOBLIB and STEPLIB,
see z/OS MVS JCL Reference.

4. LPA, which is searched in this order:
• Dynamic LPA modules, as specified in PROGxx members
• Fixed LPA (FLPA) modules, as specified in IEAFIXxx members
• Modified LPA (MLPA) modules, as specified in IEALPAxx members
• Pageable LPA (PLPA) modules, loaded from libraries specified in LPALSTxx or PROGxx

5. LPA modules are loaded in common storage, shared by all address spaces in the system. Because these modules are
reentrant and are not self-modifying, each can be used by any number of tasks in any number of address spaces at
the same time. Modules found in LPA do not need to be brought into virtual storage, because they are already in
virtual storage.

6. Libraries in the linklist, as specified in PROGxx and LNKLSTxx. By default, the linklist begins with SYS1.LINKLIB,
SYS1.MIGLIB, SYS1.CSSLIB, SYS1.SIEALNKE, and SYS1.SIEAMIGE. However, you can change this order using SYSLIB in
PROGxx and add other libraries to the linklist concatenation. The system must bring modules found in the linklist into
private area virtual storage before the programs can run.

Find program, look in:
JPA
TASKLIB
STEPLIB or JOBLIB
LPA

Dynamic (PROGXX)
FLPA
MLPA
PLPA
Linklist (concatenation) (LLA, VLF cache)

https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaa600/toc.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieaa600/toc.htm
https://www.ibm.com/docs/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.ieab600/toc.htm

12

13

Current day version (nearly unchanged) at https://www.ibm.com/docs/en/zos/2.2.0?topic=information-ascb-mapping

(But I think the PDF books are preferable)

https://www.ibm.com/docs/en/zos/2.2.0?topic=information-ascb-mapping

№ What can we do with them3

Activities
Follow chains from anchors

Format fields

Extract real-time information

Correlate values with events

Draw conclusions about resource usage and serialization delays

When using SDSF and RMF(II, III), you look into pre-cooked views of control
blocks

And more challenging endeavours, to be shown hereafter

15

16

RMF II Address Space Resource Data

17

RMF II Device Activity

18

RMF II Memory Activity incl UIC

19

RMF III WFEX Workflow/Exceptions

20

RMF III Delay Report

21

SDSF DA (ASCB+JES2 Control Blocks)

№ View Control Blocks: ISRDDN4

23

TSO ISRDDN
or, DDLIST

The default view shows allocated
files (ddnames and datastes)

24

First, allocate a mapping file to DDNAME ISRDDN

25

Look for some info (that is hard to get
elsewhere)

26

Also modules; Zoom in on IKJEFT25
IKJEFT25, the TSO TIME command

Relevant for performance because it gives you spent service units

A service unit is a cpu-independent measure of resource usage

browse IKJEFT25

disasm

27

28

Fortunately, we have the source of
an older version

We can see:
- It is written in PL/S
- The eyecatcher says 76.163
- It is reenterable
- Register equates with @

In SYS1.LINKLIB we see that it
has the attributes RF RE RU

№ View Control Blocks: IPCS5

30

№ Make Rexx programs with the
STORAGE built-in function6

32

33

34

Simple Job Name exec (works on modern z/OS)

35

There is more than one way that leads to Rome - this works on all known releases of MVS, OS/390 and z/OS

This lists all the active TSO users
on the system (all address spaces
where CSCB+28 contains a 01

You can run that from USS also
It's the same Rexx interpreter, with added functions in the ADDRESS SYSTEM
environment

36

№ Macro mappings and Assembler7

38

Assembler, plain - gets the current job number

39

Fully automated using an OS macro

40

Assembler, using EXTRACT macro

41

Assembler, EXTRACT macro expansion (SVC 40)

The super-duper macro version
The next slide has the best, most stable version

It uses IBM provided macros and mapping

So the blocks and offsets might change, but the program keeps working

There is not a lot of counting or manual mapping involved

Lazy is always better

This program is exclusively for TSO (or TSO in Batch) due to the use of the
TPUT macro for terminal I/O

42

43

Part 1

44

Part 2

№ ... or COBOL8

46

47

48

CICS or Batch

49

Output

Which, like always, is a lot of source code for one line of output. But that is the charm of COBOL: no documentation needed.

The end.
Q?: rv.jansen@xs4all.nl

mailto:rv.jansen@belastingdienst.nl

